

Edexcel AS Mathematics: Trigonometry

Section 2: Trigonometric equations

Notes and Examples

These notes contain the following subsections:

Principal values Solving simple trigonometric equations More complicated trigonometric equations

Principal values

There are infinitely many solutions to an equation like $\sin\theta = \frac{1}{2}$.

Your calculator will only give one solution – the **principal value**.

You find this by pressing the calculator keys for $\arcsin \frac{1}{2}$ (or $\sin^{-1} \frac{1}{2}$ or $inv \sin \frac{1}{2}$). Check that you can get the answer of 30°.

For $\sin\theta$ the principal value is between -90° and 90°.

You can use symmetry to find other solutions.

A second solution in a 360° cycle can be found by $180^\circ - \theta$.

Edexcel AS Maths: Trigonometry 2 Notes and examples page 1 of 7

© MEI 16/06/22 integralmaths.org

When you use the inverse cosine function, your calculator will always give you an answer from 0° to 180°.

A second solution in a 360° cycle can be found by $360^\circ - \theta$

When you use the inverse tan function, your calculator will always give you an answer between -90° and 90° .

A second solution in a 360° cycle can be found by $\theta + 180^{\circ}$ or $\theta - 180^{\circ}$.

Alternatively, you can use the CAST diagram to find other solutions.

Solving simple trigonometric equations

Because there are infinitely many solutions to a trigonometric equation you are only ever asked to find a few of them! Any question at this level asking you to solve a trigonometric equation will also give you the interval or range of values in which the solutions must lie. For example, you might be asked to solve for $0^{\circ} \le \theta \le 360^{\circ}$.

You can only directly solve trigonometric equations like $\sin \theta = \frac{1}{2}$ or $\cos \theta = \frac{1}{4}$ or $\tan \theta = -2$. Here is an example.

Example 1

Solve
$$\sin\theta = \frac{\sqrt{3}}{2}$$
 for $-360^\circ \le \theta \le 360^\circ$.

Solution

$$\sin\theta = \frac{\sqrt{3}}{2} \Longrightarrow \theta = 60^{\circ}$$

There will be a second solution in the second quadrant.

 $180^{\circ} - 60^{\circ} = 120^{\circ}$ is also a solution.

Since $y = \sin \theta$ has a period of 360° any other solution can be found by adding/subtracting 360° to these two solutions.

So the other solutions are:

and

$$60^{\circ} - 360^{\circ} = -300^{\circ}$$

$$120^{\circ} - 360^{\circ} = -240^{\circ}$$

So the values of θ for which $\sin \theta = \frac{\sqrt{3}}{2}$ are $-300^\circ, -240^\circ, 60^\circ, 120^\circ$.

Almost all equations of the type in Example 1 have two solutions in the range $0^{\circ} \le \theta \le 360^{\circ}$.

However, this is not true of all trigonometric equations. Suppose, for example, that you want to solve the equation $\sin 2x = 0.5$ in the range $0^{\circ} \le \theta \le 360^{\circ}$. You can find that $2x = 30^{\circ}$ or 150° , which means that $x = 15^{\circ}$ or 75° . However, there are two further solutions in the range $0^{\circ} \le \theta \le 360^{\circ}$, given by $2x = 30^{\circ} + 360^{\circ} = 390^{\circ} \Longrightarrow x = 195^{\circ}$, and $2x = 150^{\circ} + 360^{\circ} = 510^{\circ} \Longrightarrow x = 255^{\circ}$. So there are four solutions: $x = 15^{\circ}$, 75° , 195° , 255° .

This means that if you are solving an equation of the form $\sin nx = k$, you need to adjust the range in which you look for initial solutions.

Example 2

Solve each of the following equations in the given range:

- (a) $\tan 3x = 1$ for $0^\circ \le \theta \le 360^\circ$
- (b) $\cos(2x+40^\circ) = \frac{1}{2}$ for $-180^\circ < x \le 180^\circ$

© MEI 16/06/22 integralmaths.org

Solution

(a) $\tan 3x = 1$

You need to look for solutions for 3x in the range 0° to 1080°

$$3x = 45^{\circ}, 225^{\circ}, 405^{\circ}, 585^{\circ}, 765^{\circ}, 945^{\circ}$$

 $x = 15^{\circ}, 75^{\circ}, 135^{\circ}, 195^{\circ}, 255^{\circ}, 315^{\circ}$

(b) $\cos(2x+40^\circ) = \frac{1}{2}$

The lower end of the range you need to look in is $-180^{\circ} \times 2 + 40^{\circ} = -320^{\circ}$, and the upper end is $180^{\circ} \times 2 + 40^{\circ} = 400^{\circ}$.

$$2x + 40^{\circ} = -300^{\circ}, -60^{\circ}, 60^{\circ}, 300^{\circ}$$
$$2x = -340^{\circ}, -100^{\circ}, 20^{\circ}, 260^{\circ}$$
$$x = -170^{\circ}, -50^{\circ}, 10^{\circ}, 130^{\circ}$$

More complicated trigonometric equations

Any more complicated equations need to be manipulated algebraically before they can be solved. There are a number of techniques you can use:

- Rearrange the equation to make $\sin\theta$, $\cos\theta$ or $\tan\theta$ the subject.
- Check to see if the equation factorises to give two (or more) equations which involve just one trigonometric function (see Example 3).
- If it is a quadratic in either $\sin \theta$, $\cos \theta$ or $\tan \theta$ it can either be factorised or solved using the formula for solving quadratic equations (see Example 4).
- If the equation involves just $\sin\theta$ and $\cos\theta$ (and no powers), check to see if you can use the identity $\tan\theta \equiv \frac{\sin\theta}{\cos\theta}$ (see Example 5).

$$\cos\theta$$

• If the equation contains a mixture of trigonometric functions

(e.g. $\cos^2 \theta$ and $\sin \theta$) then you may need to use the identity $\sin^2 \theta + \cos^2 \theta \equiv 1$

to make it a quadratic in either $\sin\theta$, $\cos\theta$ or $\tan\theta$ (see Example 6).

Example 3

Solve $2\cos\theta\sin\theta + \cos\theta = 0$ for $0^\circ \le \theta \le 360^\circ$.

Solution

 $2\cos\theta\sin\theta + \cos\theta = 0$ can be factorised as there is $\cos\theta$ in both terms on the LHS.

It is wrong to divide through by $\cos\theta$ because you lose the solutions to $\cos\theta = 0$.

Factorising gives: $\cos\theta(2\sin\theta+1) = 0$ So either $\cos\theta = 0$ or $2\sin\theta+1=0$ $\cos\theta = 0 \Rightarrow \theta = 90^{\circ}$ By symmetry, $360^{\circ} - 90^{\circ} = 270^{\circ}$ is also a solution. $2\sin\theta+1=0$ $\Rightarrow \quad \sin\theta = -\frac{1}{2}$ $\Rightarrow \quad \theta = -30^{\circ}$ So, $-30^{\circ} + 360^{\circ} = 330^{\circ}$ is a solution in the right range. By symmetry, $180^{\circ} - (-30^{\circ}) = 210^{\circ}$ is also a solution. So the values of θ for which $2\cos\theta\sin\theta + \cos\theta = 0$ are 90° , 210° , 270° and 330° .

In Example 4 you need to solve a quadratic equation.

Example 4

Solve $2\cos^2\theta + 3\cos\theta = 2$ for $0^\circ \le \theta \le 360^\circ$.

Solution

 $2\cos^2\theta + 3\cos\theta = 2$ is a quadratic equation in $\cos\theta$.

Rearrange the quadratic: $2\cos^2\theta + 3\cos\theta - 2 = 0$

You can replace $\cos \theta$ with *x* to make things simpler! Or factorise straightaway to get $(2\cos \theta - 1)(\cos \theta + 2) = 0$ and then solve.

Let $x = \cos \theta$: $2x^2 + 3x - 2 = 0$

Factorising gives: (2x-1)(x+2) = 0

So, $x = \frac{1}{2} \implies \cos \theta = \frac{1}{2}$ or $x = -2 \implies \cos \theta = -2$

 $\cos\theta = -2$ has no real solutions.

Edexcel AS Maths: Trigonometry 2 Notes and examples page 5 of 7

So you need to solve $\cos\theta = \frac{1}{2} \implies \theta = 60^{\circ}$

By symmetry, $360^\circ - 60^\circ = 300^\circ$ is also a solution

So the values of θ for which $2\cos^2\theta + 3\cos\theta = 2$ are 60° and 300°.

In the next example you need to use the identity $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$.

Example 5

Solve $\sin\theta - 2\cos\theta = 0$ for $0^\circ \le \theta \le 360^\circ$.

Solution

You need to rearrange the equation: $\sin\theta - 2\cos\theta = 0$

You can safely divide by $\cos\theta$ because it can't be equal to 0. If it were then $\sin\theta$ would also have to be 0 (as you would have $\sin\theta - 2 \times 0 = 0$) and $\cos\theta$ and $\sin\theta$ are never both 0 for the same value of θ .

Dividing by $\cos\theta$:

Since $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$: $\tan \theta - 2 = 0$

 $\Rightarrow \tan \theta = 2$

 $\frac{\sin\theta}{\cos\theta} - 2 = 0$

$$\Rightarrow \theta = 63.4^{\circ}$$
 to 1 d.p.

By symmetry, $63.4^{\circ} + 180^{\circ} = 243.4^{\circ}$ is also a solution.

So the values of θ for which $\sin \theta - 2\cos \theta = 0$ are 63.4° and 243.4° to 1 d.p.

In general, you should give angles correct to 1 decimal place.

In the next example you need to use the trigonometric identity $\sin^2 \theta + \cos^2 \theta \equiv 1$.

Example 6

Solve $\sin^2 x + \sin x = \cos^2 x$ for $0^\circ \le \theta \le 360^\circ$.

Solution

Rearranging the identity $\sin^2 x + \cos^2 x \equiv 1$

Edexcel AS Maths: Trigonometry 2 Notes and examples page 6 of 7

gives:

$$\cos^2 x \equiv 1 - \sin^2 x \qquad \bigcirc \qquad \qquad \bigcirc$$

Substituting ① into the equation $\sin^2 x + \sin x = \cos^2 x$ gives:

$$\sin^2 x + \sin x = 1 - \sin^2 x$$

This is a quadratic in $\sin x$.

Rearranging	g give:	$2\sin^2 x + \sin x - 1 = 0$	
This factoris	es to give: (2s	$\sin x - 1)(\sin x + 1) = 0$	
So either:	$2\sin x - 1 = 0$	or	$\sin x + 1 = 0$
	$\Rightarrow \sin x = \frac{1}{2}$	-	$\Rightarrow \sin x = -1$
	$\Rightarrow x = 30^{\circ}$	or 150°	$\Rightarrow x = 270^{\circ}$

So the solutions to $\sin^2 x + \sin x = \cos^2 x$ are $x = 30^\circ$, 150°, 270°