Edexcel AS Mathematics: Trigonometry

Section 2: Trigonometric equations

Notes and Examples

These notes contain the following subsections:

Principal values

Solving simple trigonometric equations

More complicated trigonometric equations

Principal values

There are infinitely many solutions to an equation like $\sin \theta=\frac{1}{2}$.
Your calculator will only give one solution - the principal value.
You find this by pressing the calculator keys for $\arcsin \frac{1}{2}\left(\right.$ or $\sin ^{-1} \frac{1}{2}$ or invsin$\frac{1}{2}$). Check that you can get the answer of 30°.

For $\sin \theta$ the principal value is between -90° and 90°.

You can use symmetry to find other solutions.

A second solution in a 360° cycle can be found by $180^{\circ}-\theta$.

When you use the inverse cosine function, your calculator will always give you an answer from 0° to 180°.

A second solution in a 360° cycle can be found by $360^{\circ}-\theta$

When you use the inverse tan function, your calculator will always give you an answer between -90° and 90°.

A second solution in a 360° cycle can be found by $\theta+180^{\circ}$ or $\theta-180^{\circ}$.
Alternatively, you can use the CAST diagram to find other solutions.

Solving simple trigonometric equations

Because there are infinitely many solutions to a trigonometric equation you are only ever asked to find a few of them! Any question at this level asking you to solve a trigonometric equation will also give you the interval or range of values in which the solutions must lie. For example, you might be asked to solve for $0^{\circ} \leq \theta \leq 360^{\circ}$.

You can only directly solve trigonometric equations like $\sin \theta=\frac{1}{2}$ or $\cos \theta=\frac{1}{4}$ or $\tan \theta=-2$. Here is an example.

Example 1
Solve $\sin \theta=\frac{\sqrt{3}}{2}$ for $-360^{\circ} \leq \theta \leq 360^{\circ}$.

Solution

$\sin \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=60^{\circ}$

There will be a second solution in the second quadrant.
$180^{\circ}-60^{\circ}=120^{\circ}$ is also a solution.
Since $y=\sin \theta$ has a period of 360° any other solution can be found by adding/subtracting 360° to these two solutions.

So the other solutions are:

$$
60^{\circ}-360^{\circ}=-300^{\circ}
$$

and

$$
120^{\circ}-360^{\circ}=-240^{\circ}
$$

So the values of θ for which $\sin \theta=\frac{\sqrt{3}}{2}$ are $-300^{\circ},-240^{\circ}, 60^{\circ}, 120^{\circ}$.

Almost all equations of the type in Example 1 have two solutions in the range $0^{\circ} \leq \theta \leq 360^{\circ}$.

However, this is not true of all trigonometric equations. Suppose, for example, that you want to solve the equation $\sin 2 x=0.5$ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$. You can find that $2 x=30^{\circ}$ or 150°, which means that $x=15^{\circ}$ or 75°. However, there are two further solutions in the range $0^{\circ} \leq \theta \leq 360^{\circ}$, given by $2 x=30^{\circ}+360^{\circ}=390^{\circ} \Rightarrow x=195^{\circ}$, and $2 x=150^{\circ}+360^{\circ}=510^{\circ} \Rightarrow x=255^{\circ}$. So there are four solutions:
$x=15^{\circ}, 75^{\circ}, 195^{\circ}, 255^{\circ}$.
This means that if you are solving an equation of the form $\sin n x=k$, you need to adjust the range in which you look for initial solutions.

Example 2

Solve each of the following equations in the given range:
(a) $\tan 3 x=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(b) $\cos \left(2 x+40^{\circ}\right)=\frac{1}{2}$ for $-180^{\circ}<x \leq 180^{\circ}$

Solution
(a) $\quad \tan 3 x=1$

You need to look for solutions for $3 x$ in the range 0° to 1080°

$$
\begin{aligned}
3 x & =45^{\circ}, 225^{\circ}, 405^{\circ}, 585^{\circ}, 765^{\circ}, 945^{\circ} \\
x & =15^{\circ}, 75^{\circ}, 135^{\circ}, 195^{\circ}, 255^{\circ}, 315^{\circ}
\end{aligned}
$$

(b) $\cos \left(2 x+40^{\circ}\right)=\frac{1}{2}$

The lower end of the range you need to look in is $-180^{\circ} \times 2+40^{\circ}=-320^{\circ}$, and the upper end is $180^{\circ} \times 2+40^{\circ}=400^{\circ}$.

$$
\begin{aligned}
2 x+40^{\circ} & =-300^{\circ},-60^{\circ}, 60^{\circ}, 300^{\circ} \\
2 x & =-340^{\circ},-100^{\circ}, 20^{\circ}, 260^{\circ} \\
x & =-170^{\circ},-50^{\circ}, 10^{\circ}, 130^{\circ}
\end{aligned}
$$

More complicated trigonometric equations

Any more complicated equations need to be manipulated algebraically before they can be solved. There are a number of techniques you can use:

- Rearrange the equation to make $\sin \theta, \cos \theta$ or $\tan \theta$ the subject.
- Check to see if the equation factorises to give two (or more) equations which involve just one trigonometric function (see Example 3).
- If it is a quadratic in either $\sin \theta, \cos \theta$ or $\tan \theta$ it can either be factorised or solved using the formula for solving quadratic equations (see Example 4).
- If the equation involves just $\sin \theta$ and $\cos \theta$ (and no powers), check to see if you can use the identity $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ (see Example 5).
- If the equation contains a mixture of trigonometric functions
(e.g. $\cos ^{2} \theta$ and $\sin \theta$) then you may need to use the identity $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$ to make it a quadratic in either $\sin \theta, \cos \theta$ or $\tan \theta$ (see Example 6).

Example 3

Solve $2 \cos \theta \sin \theta+\cos \theta=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Solution
$2 \cos \theta \sin \theta+\cos \theta=0$ can be factorised as there is $\cos \theta$ in both terms on the LHS

It is wrong to divide through by $\cos \theta$ because you lose the solutions to $\cos \theta=0$.
Factorising gives: $\quad \cos \theta(2 \sin \theta+1)=0$
So either $\cos \theta=0$ or $2 \sin \theta+1=0$

$$
\cos \theta=0 \Rightarrow \theta=90^{\circ}
$$

By symmetry, $360^{\circ}-90^{\circ}=270^{\circ}$ is also a solution.

$$
\begin{aligned}
& & 2 \sin \theta+1 & =0 \\
\Rightarrow & & \sin \theta & =-\frac{1}{2} \\
\Rightarrow & & \theta & =-30^{\circ}
\end{aligned}
$$

So, $-30^{\circ}+360^{\circ}=330^{\circ}$ is a solution in the right range.
By symmetry, $180^{\circ}-\left(-30^{\circ}\right)=210^{\circ}$ is also a solution.
So the values of θ for which $2 \cos \theta \sin \theta+\cos \theta=0$ are $90^{\circ}, 210^{\circ}, 270^{\circ}$ and 330°.

In Example 4 you need to solve a quadratic equation.

Example 4

Solve $2 \cos ^{2} \theta+3 \cos \theta=2$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Solution

$2 \cos ^{2} \theta+3 \cos \theta=2$ is a quadratic equation in $\cos \theta$.
Rearrange the quadratic: $2 \cos ^{2} \theta+3 \cos \theta-2=0$
You can replace $\cos \theta$ with x to make things simpler!
Or factorise straightaway to get $(2 \cos \theta-1)(\cos \theta+2)=0$ and then solve.

Let $x=\cos \theta: \quad 2 x^{2}+3 x-2=0$
Factorising gives: $\quad(2 x-1)(x+2)=0$
So, $x=\frac{1}{2} \Rightarrow \cos \theta=\frac{1}{2}$
or $x=-2 \Rightarrow \cos \theta=-2$
$\cos \theta=-2$ has no real solutions.

So you need to solve $\cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
By symmetry, $360^{\circ}-60^{\circ}=300^{\circ}$ is also a solution
So the values of θ for which $2 \cos ^{2} \theta+3 \cos \theta=2$ are 60° and 300°.
In the next example you need to use the identity $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$.

Example 5

Solve $\sin \theta-2 \cos \theta=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Solution

You need to rearrange the equation: $\sin \theta-2 \cos \theta=0$
You can safely divide by $\cos \theta$ because it can't be equal to 0 . If it were then $\sin \theta$ would also have to be 0 (as you would have $\sin \theta-2 \times 0=0$) and $\cos \theta$ and $\sin \theta$ are never both 0 for the same value of θ.

Dividing by $\cos \theta: \quad \frac{\sin \theta}{\cos \theta}-2=0$
Since $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}: \quad \tan \theta-2=0$

$$
\begin{aligned}
& \Rightarrow \tan \theta=2 \\
& \Rightarrow \theta=63.4^{\circ} \text { to } 1 \text { d.p. }
\end{aligned}
$$

By symmetry, $63.4^{\circ}+180^{\circ}=243.4^{\circ}$ is also a solution.

So the values of θ for which $\sin \theta-2 \cos \theta=0$ are 63.4° and 243.4° to $1 \mathrm{~d} . \mathrm{p}$.

```
In general, you should give angles correct to 1 decimal place.
```

In the next example you need to use the trigonometric identity $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$.

Example 6

Solve $\sin ^{2} x+\sin x=\cos ^{2} x$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Solution

Rearranging the identity

$$
\sin ^{2} x+\cos ^{2} x \equiv 1
$$

gives:

$$
\begin{equation*}
\cos ^{2} x \equiv 1-\sin ^{2} x \tag{1}
\end{equation*}
$$

Substituting (1) into the equation $\sin ^{2} x+\sin x=\cos ^{2} x$ gives:

$$
\sin ^{2} x+\sin x=1-\sin ^{2} x
$$

This is a quadratic in $\sin x$.
Rearranging give: $\quad 2 \sin ^{2} x+\sin x-1=0$
This factorises to give: $(2 \sin x-1)(\sin x+1)=0$
So either: $\quad 2 \sin x-1=0$
or

$$
\Rightarrow \sin x=\frac{1}{2}
$$

$$
\Rightarrow x=30^{\circ} \text { or } 150^{\circ}
$$

$$
\begin{aligned}
& \sin x+1=0 \\
& \Rightarrow \sin x=-1 \\
& \Rightarrow x=270^{\circ}
\end{aligned}
$$

So the solutions to $\sin ^{2} x+\sin x=\cos ^{2} x$ are $x=30^{\circ}, 150^{\circ}, 270^{\circ}$

